

Geometría. Taller 2

17 de Abril 2018

Congruencias

Problemas

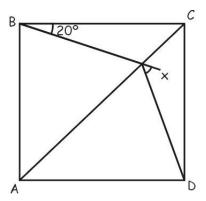
Problema 1. Dados tres lados, ¿cuáles son las condiciones necesarias y suficientes para poder hacer un triángulo?

Problema 2. a) Construye, con regla y compás un triángulo dados dos lados y el ángulo entre ellos.

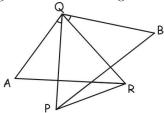
b) Si el ángulo no está entre ellos dos, ¿cuántos triángulos diferentes puedes formar?

Problema 3. a) Construye, con regla y compás un triángulo dados dos ángulos y el lado entre ellos.

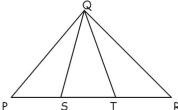
b) Si el lado no está entre ellos dos, ¿cuántos triángulos diferentes puedes formar?

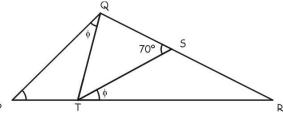

Problema 4. Con regla y compás:

- a) Traza las bisectrices de un triángulo.
- b) Traza las mediatrices de un triángulo.
- c) Traza las medianas de un triángulo.

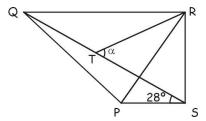

Problema 5. Demuestre que si ABC es un triángulo isósceles con AB = CA y si A' es el punto medio de BC, entonces los triángulos ABA' y ACA' son congruentes. ¿Qué se puede concluir?

Problema 6. Si ABCD es un cuadrado, el valor del ángulo "x" es:




Problema 7. Encontrar PB, si $PQ\cong QA$, $QR\cong BQ$, AR=17 y los ángulos marçados son iguales.

Problema 8. Calcular QT, si $PQ\cong QR$, $PT\cong SR$, QS=11



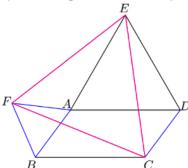
Problema 9. En la figura tenemos $PQ\cong TR,\quad TQ\cong TS,$ hallar el valor del ángulo Φ

Problema 10. En la figura tenemos que $QT\cong PS,\quad QR\cong PR,\quad TR\cong SR$ hallar " α "

Problema 11. En un cuadrado ABCD se traza AP, con P en CD) y luego $BM \perp AP$, $DN \perp AP$. Consideramos los puntos M, N en AP, si BM = 24, MN = 7, hallar la longitud del segmento DN

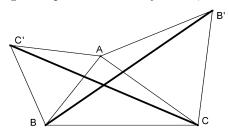
Problema 12. Sea ABC un triángulo rectángulo con ángulo recto en C. Sea M un punto en BC tal que AM es bisectriz del ángulo en A, y N un punto en AB tal que MN es perpendicular a AB. Si CM mide 23 cm, calcula la longitud del segmento MN.

Problema 13. Demuestre que:


- 1 La diagonal de un paralelogramo, divide al paralelogramo en dos triángulos congruentes.
- 2 Demuestra que los lados opuestos de un paralelogramo miden lo mismo.
- $3\,$ Demuestra que las diagonales de un paralelogramo se cortan en su punto medio.

Problema 14. Demuestre que:

- 1 Todo cuadrilátero que tenga pares de lados opuestos iguales es un paralelogramo.
- 2 Todo cuadrilátero cuyas diagonales se cortan en su punto medio es un paralelogramo.
- 3 Si un cuadrilátero tiene un par de lados paralelos y de igual longitud es un paralelogramo.



Ejemplo 1.4.2 En la siguiente figura, ABCD es un paralelogramo. Sobre los lados AB y AD se dibujan los triángulos equiláteros $\triangle ABF$ y $\triangle ADE$, respectivamente. Demuestra que el triángulo $\triangle FCE$ es equilátero.

Problema 15.

Problema 16. Si sobre los lados AB y CA de un triángulo ABC se construyen triángulos equiláteros ABC' y CAB', entonces BB' = CC'.

Problema 17.

Problema 1.21 En un paralelogramo ABCD se escogen los puntos E y F sobre la diagonal AC de manera que AE = FC. Si BE se extiende hasta intersectar AD en H, y BF se extiende hasta intersectar DC en G, demuestra que HG es paralelo a AC.

Problema 1.22 AM es la mediana hacia el lado BC de un triángulo $\triangle ABC$. Se toma un punto P sobre AM. BP se extiende hasta intersectar AC en E, y CP se extiende hasta intersectar AB en D. Demuestra que DE es paralelo a BC.

Problema 1.23 Sobre los lados AB y AC de un triángulo $\triangle ABC$ se construyen hacia afuera los cuadrados ABNM y CAPQ. Sea D el punto medio del lado BC. Demuestra que $PM = 2 \cdot AD$.